搜索引擎技术选型调研:Elasticsearch与Solr

西域战神 2018-10-24 14:31:27 ⋅ 895 阅读

Elasticsearch是一个实时分布式搜索和分析引擎。它可以帮助你用前所未有的速度去处理大规模数据。

它可以用于全文搜索结构化搜索以及分析,当然你也可以将这三者进行组合。

Elasticsearch是一个建立在全文搜索引擎 Apache Lucene™ 基础上的搜索引擎,可以说Lucene是当今最先进,最高效的全功能开源搜索引擎框架。

但是Lucene只是一个框架,要充分利用它的功能,需要使用JAVA,并且在程序中集成Lucene。需要很多的学习了解,才能明白它是如何运行的,Lucene确实非常复杂。

Elasticsearch使用Lucene作为内部引擎,但是在使用它做全文搜索时,只需要使用统一开发好的API即可,而不需要了解其背后复杂的Lucene的运行原理。

当然Elasticsearch并不仅仅是Lucene这么简单,它不但包括了全文搜索功能,还可以进行以下工作:

  • 分布式实时文件存储,并将每一个字段都编入索引,使其可以被搜索。

  • 实时分析的分布式搜索引擎。

  • 可以扩展到上百台服务器,处理PB级别的结构化或非结构化数据。

这么多的功能被集成到一台服务器上,你可以轻松地通过客户端或者任何你喜欢的程序语言与ES的RESTful API进行交流。

Elasticsearch的上手是非常简单的。它附带了很多非常合理的默认值,这让初学者很好地避免一上手就要面对复杂的理论,

它安装好了就可以使用了,用很小的学习成本就可以变得很有生产力。

随着越学越深入,还可以利用Elasticsearch更多高级的功能,整个引擎可以很灵活地进行配置。可以根据自身需求来定制属于自己的Elasticsearch。

使用案例:

  • 维基百科使用Elasticsearch来进行全文搜做并高亮显示关键词,以及提供search-as-you-type、did-you-mean等搜索建议功能。

  • 英国卫报使用Elasticsearch来处理访客日志,以便能将公众对不同文章的反应实时地反馈给各位编辑。

  • StackOverflow将全文搜索与地理位置和相关信息进行结合,以提供more-like-this相关问题的展现。

  • GitHub使用Elasticsearch来检索超过1300亿行代码。

  • 每天,Goldman Sachs使用它来处理5TB数据的索引,还有很多投行使用它来分析股票市场的变动。

但是Elasticsearch并不只是面向大型企业的,它还帮助了很多类似DataDog以及Klout的创业公司进行了功能的扩展。

Elasticsearch的优缺点**:

优点

  1. Elasticsearch是分布式的。不需要其他组件,分发是实时的,被叫做”Push replication”。

  2. Elasticsearch 完全支持 Apache Lucene 的接近实时的搜索。

  3. 处理多租户(multitenancy)不需要特殊配置,而Solr则需要更多的高级设置。

  4. Elasticsearch 采用 Gateway 的概念,使得完备份更加简单。

  5. 各节点组成对等的网络结构,某些节点出现故障时会自动分配其他节点代替其进行工作。

缺点

  1. 只有一名开发者(当前Elasticsearch GitHub组织已经不只如此,已经有了相当活跃的维护者)

  2. 还不够自动(不适合当前新的Index Warmup API)

Solr简介*

Solr(读作“solar”)是Apache Lucene项目的开源企业搜索平台。其主要功能包括全文检索命中标示分面搜索动态聚类数据库集成,以及富文本(如Word、PDF)的处理。Solr是高度可扩展的,并提供了分布式搜索和索引复制。Solr是最流行的企业级搜索引擎,Solr4 还增加了NoSQL支持。

Solr是用Java编写、运行在Servlet容器(如 Apache Tomcat 或Jetty)的一个独立的全文搜索服务器。 Solr采用了 Lucene Java 搜索库为核心的全文索引和搜索,并具有类似REST的HTTP/XML和JSON的API。Solr强大的外部配置功能使得无需进行Java编码,便可对其进行调整以适应多种类型的应用程序。Solr有一个插件架构,以支持更多的高级定制。

因为2010年 Apache Lucene 和 Apache Solr 项目合并,两个项目是由同一个Apache软件基金会开发团队制作实现的。提到技术或产品时,Lucene/Solr或Solr/Lucene是一样的。

Solr的优缺点

优点

  1. Solr有一个更大、更成熟的用户、开发和贡献者社区。

  2. 支持添加多种格式的索引,如:HTML、PDF、微软 Office 系列软件格式以及 JSON、XML、CSV 等纯文本格式。

  3. Solr比较成熟、稳定。

  4. 不考虑建索引的同时进行搜索,速度更快。

缺点

  1. 建立索引时,搜索效率下降,实时索引搜索效率不高。

Elasticsearch与Solr的比较*

当单纯的对已有数据进行搜索时,Solr更快。

当实时建立索引时, Solr会产生io阻塞,查询性能较差, Elasticsearch具有明显的优势。

随着数据量的增加,Solr的搜索效率会变得更低,而Elasticsearch却没有明显的变化。

综上所述,Solr的架构不适合实时搜索的应用。

实际生产环境测试*

下图为将搜索引擎从Solr转到Elasticsearch以后的平均查询速度有了50倍的提升。

Elasticsearch 与 Solr 的比较总结

  • 二者安装都很简单;

  • Solr 利用 Zookeeper 进行分布式管理,而 Elasticsearch 自身带有分布式协调管理功能;

  • Solr 支持更多格式的数据,而 Elasticsearch 仅支持json文件格式;

  • Solr 官方提供的功能更多,而 Elasticsearch 本身更注重于核心功能,高级功能多有第三方插件提供;

  • Solr 在传统的搜索应用中表现好于 Elasticsearch,但在处理实时搜索应用时效率明显低于 Elasticsearch。

Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用。

其他基于Lucene的开源搜索引擎解决方案*

  1. 直接使用 Lucene

说明:Lucene 是一个 JAVA 搜索类库,它本身并不是一个完整的解决方案,需要额外的开发工作。

优点:成熟的解决方案,有很多的成功案例。apache 顶级项目,正在持续快速的进步。庞大而活跃的开发社区,大量的开发人员。它只是一个类库,有足够的定制和优化空间:经过简单定制,就可以满足绝大部分常见的需求;经过优化,可以支持 10亿+ 量级的搜索。

缺点:需要额外的开发工作。所有的扩展,分布式,可靠性等都需要自己实现;非实时,从建索引到可以搜索中间有一个时间延迟,而当前的“近实时”(Lucene Near Real Time search)搜索方案的可扩展性有待进一步完善

  • Katta

说明:基于 Lucene 的,支持分布式,可扩展,具有容错功能,准实时的搜索方案。

优点:开箱即用,可以与 Hadoop 配合实现分布式。具备扩展和容错机制。

缺点:只是搜索方案,建索引部分还是需要自己实现。在搜索功能上,只实现了最基本的需求。成功案例较少,项目的成熟度稍微差一些。因为需要支持分布式,对于一些复杂的查询需求,定制的难度会比较大。

  • Hadoop contrib/index

说明:Map/Reduce 模式的,分布式建索引方案,可以跟 Katta 配合使用。

优点:分布式建索引,具备可扩展性。

缺点:只是建索引方案,不包括搜索实现。工作在批处理模式,对实时搜索的支持不佳。

  • LinkedIn 的开源方案

说明:基于 Lucene 的一系列解决方案,包括 准实时搜索 zoie ,facet 搜索实现 bobo ,机器学习算法 decomposer ,摘要存储库 krati ,数据库模式包装 sensei 等等

优点:经过验证的解决方案,支持分布式,可扩展,丰富的功能实现

缺点:与 linkedin 公司的联系太紧密,可定制性比较差

  • Lucandra

说明:基于 Lucene,索引存在 cassandra 数据库中

优点:参考 cassandra 的优点

缺点:参考 cassandra 的缺点。另外,这只是一个 demo,没有经过大量验证

  • HBasene

说明:基于 Lucene,索引存在 HBase 数据库中

优点:参考 HBase 的优点

缺点:参考 HBase 的缺点。另外,在实现中,lucene terms 是存成行,但每个 term 对应的 posting lists 是以列的方式存储的。随着单个 term 的 posting lists 的增大,查询时的速度受到的影响会非常大

---------------END----------------

后续的内容同样精彩

长按关注“IT实战联盟”哦



全部评论: 0

    我有话说:

    Elasticsearch 7.9.3 发布

    Elasticsearch 是一个分布式的 RESTful 风格的搜索和数据分析引擎,能够解决越来越多的用例。Elasticsearch 7.9.3 已经发布,本次更新信息如下: BUG 修复

    Apache Solr 8.8.1 发布,Java 企业级搜索引擎

    Apache Solr 8.8.1 已发布,Solr 是基于 Lucene 的全文搜索服务器,也是最流行的企业级搜索引擎,其主要功能包括全文检索、命中高亮、分面搜索、动态聚类、数据库集成

    「小米技术Soar一键优化工具--SQL优化和改写的自动化工具

    SOAR(SQL Optimizer And Rewriter)是一个对SQL进行优化和改写的自动化工具。由小米人工智能云平台的数据库团队开发维护。

    PowerJob —强大的分布式任务调度计算框架

    PowerJob让您轻松完成作业的调度繁杂任务的分布式计算。

    Elasticsearch运维宝典——监控实战篇

    本文从运维角度,对 ES 服务监控进行了系统性总结,涵盖监控工具、监控采集项筛选介绍,最后列举了几个借助监控发现的ES线上问题。

    Elasticsearch-基础介绍及索引原理分析

    Elasticsearch是一个Lucene支持的分布式文本检索引擎。针对大型数据集的索引检索功能,Elasticsearch性能非常优越。当你有关于数据的附加属性且你能够知道具体需要查询的记录时

    交叉工作流程

    交叉工作流程跟前面讨论过的流程相比大不相同,不再使用单一的服务器端中心代码仓库,而是给每个开发人员一个服务器端的代码仓库,也就是说每个开发人员都有两个Git仓库:私人的本地仓库和公共的服务器端仓库

    架构实战篇(十一):Spring Boot 集成企业级搜索引擎 SolrCloud

    Solr是以Lucene为基础实现的文本检索应用服务。Solr部署方式有单机方式、多机Master-Slaver方式、Cloud方式。

    「转载」蘑菇街消息系统上云实践

    小编又来啦~本周要推荐给大家的是一篇跟中间件上云相关的技术文章,这里面详细的记录了,蘑菇街自研消息系统上云的全过程,也是市面上开放出来为数不多的企业自研组件上云实践。有相关需求的同学可以好好学习下

    Git托管平台的拉取请求

    拉取请求是Bitbucket的一个特性(经调查,Gitlab、Github都支持这个特性),可以让开发人员的协作更加容易,他们提供了一个友好的网页界面让开发者在集成代码到正式库之前对其进行讨论

    前端实战篇:JavaScript 反调试技巧的简单应用(上)

    最近作者看了一些关于JavaScript反调试的帖子,今天给大家整理一下希望有帮助。

    前端实战篇:JavaScript 反调试技巧的简单应用(下)

    通过时间差异、DevTools检测(Chrome)、隐式流完整性控制和 代理对象来达到JavaScript反调试目的

    「开源资讯」任务调度中间件PowerJob 3.3.0 发布

    PowerJob简介 PowerJob是全新一代分布式调度计算框架,能让您轻松完成作业的调度繁杂任务的分布式计算。 下载地址:https://gitee.com/KFCFans/PowerJob

    全手敲全文索引ElasticSearch基础知识点干货

    原文:https://www.toutiao.com/i6936455750218826244 1. ElasticSearch是一个可扩展的分布式全文检索引擎,基于Lucene为核心,封装基础

    Elasticsearch 7.11.2 发布,提升缓存效率

    Elasticsearch 7.11.2 正式发布,此次更新内容如下: 增强 提高碎片级请求缓存效率 #69505 Bug 修复 聚合 修正用 doc_count 执行过滤器的过滤器

    架构实战篇:一个可供中小团队参考的微服务架构技术

    作者近年一直在一线互联网公司(携程,拍拍贷等)开展微服务架构实践,根据我个人的一线实践经验和我平时对Spring Cloud的调研,我认为Spring Cloud技术栈中的有些组件离生产级开发尚有

    关系数据库管理系统openGauss 1.0.1版本发布

    openGauss简介 openGauss是一款开源关系数据库管理系统,采用木兰宽松许可证v2发行。openGauss内核源自PostgreSQL,深度融合华为在数据库领域多年的经验,结合企业级

    字节跳动 Go RPC 框架 KiteX 性能优化实践

    本文自“字节跳动基础架构实践”系列文章。“字节跳动基础架构实践”系列文章是由字节跳动基础架构部门各技术团队及专家倾力打造的技术干货内容,和大家分享团队在基础架构发展和演进过程中的实践经验教训,

    RPC调用GC垃圾回收

    多个服务协同完成一次业务时,由于业务约束(如红包不符合使用条件、账户余额不足等)、系统故障(如网络或系统超时或中断、数据库约束不满足等),都可能造成服务处理过程在任何一步无法继续,使数据处于不一致的状态。